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An asymptotic theory of flows with free interaction is developed in [I, 2]. The simple 
form of the equations and boundary conditions and the general form of the similarity law 
afford the possibility of its application to a sufficiently broad class of flows. Numerical 
solutions are obtained for some of these flows, problem formulations are presented for others, 
equations and boundary conditions are written down, or reasoning is presented about the nature 
of the flow. Stationary hypersonic flows of a viscous gas with entropy layers are investi- 
gated in [3]. Equations subject to nonstationary processes in the boundary layer with self- 
induced pressure are investigated in [4]. 

In this paper the theory of flows with free interaction is applied to an investigation 
of nonstationary hypersonic viscous gas flows with entropy layers. 

Let us consider the hypersonic viscous gas flow around a plate of finite length I paral- 
lel to the free stream (M~ >>I). The gas parameters in the unperturbed stationary state are 
marked with the subscript ~. We assume that the Reynolds number Reo = pou~/~o is large. 
Here p, u, ~ are the density, tangential velocity component, and dynamic viscosity coeffi- 
cient, respectively, and the subscript 0 marks values of the Rarameters evaluated at the 
free-stream stagnation temperature. We shall consider M~Re717=<< I. Let there be an entropy 
layer of thickness ~ent, i.e., an inviscid flow domain in which the stagnation enthalpy can 
be taken equal to its value in the hypersonic stream, while the stagnation pressure and the 
density are considerably less than the corresponding quantities in the hypersonic stream, 
between the boundary laver and the hypersonic stream. Hence, the number Ment ~ 0(1) and 
varies smoothly between a certain supersonic value on the upper boundary layer boundary and 
the hypersonic value M~ >>|. 

Let t denote the time; x, y, Cartesian coordinates; u, v, velocity vector coordinates 
along these axes; p, density; and p, pressure. 

In conformity with the general theory [I, 2] and its application to the weak hypersonic 
interaction regime for a temperature factor O(]) [5], and according to [3] we will consider 
that four domains with substantially distinct properties will be formed during the free in- 
teraction of a nonstationary boundary layer with the external flow. The viscosity and heat- 
conduction effects are small in the upper domain I, and there are no vortices in the flow. 
The influence of dissipative factors can also be neglected in the middle domains II (outer 
part of the boundary layer) and IV (enthalpy layer domain), but the velocity field is vor- 
tical. The domain III consists of narrow near-wall viscous boundary-layer zones in which 
small pressure drops because of the high value of the pressure gradient cause a change in 
the velocity of the same order as the velocity itself. Viscosity plays a definite part in 
the formation of the flow in this domain. As regards the heat conduction, its role is secon- 
dary, at least for the temperature factor ~O(I), since gas compressibility is not manifest 
for law velocities. The outer part of the boundary layer (the domain II) does not exert 
any substantial influence on the flow in a first approximation for gw ~ 1 (gw is a tempera- 
ture factor). 

According to [3], we have the following estimates for the flow functions: 

A p / p  ,'-" (M~e) x/2' A x / l  , ~  (M~) 3/a, ( l )  
8 J l  , - ,  ~ (M~ e) a~, ~ : 8 o / l  ,-~ Re~ 1/~, 
5~/1 ,-~ e/(M~e) ~/~, u 3 / u ~  ,-~ (M~@/*. 

Uere and below the number of the domain to which the appropriate functio~ is referred is 
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marked by a subscript, for instance 6~ is the thickness of domain III (60 is the thickness 
of the unperturbed boundary layer). 

The similarity parameter characterizing the role of the entropy layer in the interaction 

= , . = i = ti ] , process can be written in the form N ~,~64/(~.~o~) I/4 If we set t (I/uoo)[to + ,~oc) I/2 

i = !, 2, 3, 4, then it is essential that all the equations that describe processes in the 
different domains III should not contain derivatives with respect to the time~ This means that 
the flows in domains I, IV, and II will behave inertly, succeeding in adjusting instantan- 
eously to those perturbations that occur in the near-wall domain III. This result is obtained 
in [4], it is true, but under a certain other normalization for the time. The estimates cal- 
culated above permit introduction of asymptotic representations for the flow functions and 
formulation of the boundary-value problems by following the method in [], 2]. 

Let us introduce the following variables 

/ u2 \ a14 / 9 \ 

2 ~ U 

ag~,u'~ 0~1 P,  a =  ou 5 p  = 9w ~ 

~==~\pIMIE/ A*, u=7\ ,~,=~ P= ' ,o.='~="-I - -  - -  ~+ Y ,  AY4 = - - / ~ 7 - - / ~ 4 ,  

L e n t = ~ o  - - t  dg < O, t = - -  \ ~  , ~. 

The f o r m u l a s  (2) a s s u r e  the  p a s s a g e  to  d i m e n s i o n l e s s  v a r i a b l e s  s i m u l t a n e o u s l y  w i t h  the  i n t r o -  
d u c t i o n  o f  t h e  a s y m p t o t i c  s c a l e s .  For  domain I I I  ~e o b t a i n  

OUl.O'c + UOU/OX 4- VOU/OY = - - O P / O X  + O'UIOY", (3) 

OU/OX 4-. OV/OY = O, 

U = 0 ,  V ~ 0  for Y - + 0 ,  

U = Y + A ( T , X )  for Y - + c o  or X - + - - o o .  

Merger  w i t h  t he  s o l u t i o n  f o r  domains I ,  I I ,  IV y i e l d s  

d 
P = ~ (h*  - -  NA4).  ( 4 )  

We write the variable part of the displacement thickness in the form 

oo 

A* = g - -  d / =  - -  A (~, X) ,  54 = P.  (5) 

A d e r i v a t i o n  o f  t h i s  l a t t e r  f o r m u l a  (5) i s  p r e s e n t e d  in  [ 5 ] .  The f o r m u l a  

I a ~ \I12 

2 P (6) P= \ o . M =  = ] 
can be written for the similarity parameter N. We shall seek the solution of the problem (3) 
and (4) in the form 

U = Y - -  ae o~+~'x d/ /dy,  V = ake  ~ P = ae=~+ kx, (7) 

where a is the perturbation amplitude. Linearization in the perturbation amplitude ~ reduces 
the problem (3) and (4) to the following form: 

daltdy = - -  (co + ky)d l ldy  + k / +  k = O, (8) 

I(O) = 1'(o) = o, I'(:,) -,- ( l  + N k ) l k  fo~ y - +  . .  

We assume the constants ~ and k in (7) to be complexes: 

o) = o h q - i % ,  k = k z + i k ~ .  

To satisfy the limit conditions as X § it is sufficient to take kl > 0. 
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The problem (8) is an eigenvalue problem. To solve the problem (8) we differentiate the 
first equation in (8) and perform a transformation z = ~/k 2/3 + kl/3y of the independent var- 

iable. 

The solution satisfying the condition [df/dzI < = is written in the form 

f=-- ~ J ~/~/3L~/h=/3 

where Ai(z) is the Airy function of a complex variable. 

The last equation in (8) results in the dispersion relationship 

(1 -b Nk) = k 41a Ai(z) dz, (9) 

which i n t e r r e l a t e s  the exponen t s  k and ~. Values o f  t h e s e  exponen t s  t h a t  s a t i s f y  r e l a t i o n -  
s h i p  (9) a re  i n t r i n s i c  i n  the  s o l u t i o n  o f  the  b o u n d a r y - v a l u e  p rob lem ( 8 ) .  �9 Problem (8) d i f f e r s  
from the  p rob lem s o l v e d  in  [4] by the  p r e s e n c e  o f  the  f a c t o r  (1 + Nk) t h a t  c h a r a c t e r i z e s  the  
r o l e  o f  the  e n t r o p y  l a y e r ,  i n  the  d i s p e r s i o n  r e l a t i o n s h i p  (9 ) .  The i n f l u e n c e  o f  t h i s  f a c t o r  
on the  va lue  o f  the  exponen t s  ~ and k a re  shown in  F i g s .  1 and 2. The dependence o f  k l  on 
~i is represented in Fig 1 for ~ = k2 = O. It should be noted that the curve in Fig. I is 

�9 �9 �9 ! 2! 

obtained by a direct conversion of the data zn [4] if we set ~i/k~ 13 = ~11/k~i 3, k~ = k1~/ 
(l + Nk~) 3/4, where ~, k11 are the data in [4]. The curve for N = 0 corresponds to the 
results in [4]. Values of k~ are superposed in Fig. 2 for k2 = ~2 = 0 and m~ = 0 as a func- 

tion of the parameter N. For the value k = k~ the time dependence drops out in the linear 
solution of (8), and the gas flow in the boundary layer is stationary. 

For k > k~ the exponent is m~ > 0, in this case the wave rhns opposite to the main flow 
direction. For k < k~ ~ < 0. In this case the wave runs downstream. As N grows, k~ also 

grows. This latter is in agreement with known results [3] when greater and greater growth of 
the excess pressure along the X axis is necessary to assure upstream penetration of the per- 

turbations as N grows. 
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